
Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2542 

Review of Some Checkpointing Schemes for 

Distributed and Mobile Computing 

Environments 
Mr Raman Kumar  

     Mewar University, Chittorgargh (Raj)  

       Email: rmn.kmr1@gmail.com 

Dr Parveen Kumar 

Amity University Gurgaon (Haryana) 

Email: pk223475@gmail.com 

---------------------------------------------------------------------ABSTRACT------------------------------------------------------- 

Fault Tolerance Techniques facilitate systems to carry out tasks in the incidence of faults. A checkpoint is a local 

state of a process saved on stable storage. In a distributed system, since the processes in the system do not share 

memory; a global state of the system is defined as a combination of local states, one from each process. In case of a 

fault in distributed systems, checkpointing enables the execution of a program to be resumed from a previous 

consistent global state rather than resuming the execution from the commencement. In this way, the sum of 

constructive processing vanished because of the fault is appreciably reduced. In this paper, we talk about various 

issues related to the checkpointing for distributed systems and mobile computing environments. We also confer 

various types of checkpointing: coordinated checkpointing, asynchronous checkpointing, communication induced 

checkpointing and message logging based checkpointing. We also present a survey of some checkpointing 

algorithms for distributed systems.    

Keywords: Check pointing algorithms; parallel & distributed computing; rollback recovery; fault-tolerant 

systems. 

----------------------------------------------------------------------------------------------------------------------------- ------------- 

      Date of Submission: December 24, 2014      Date of Acceptance: February 15, 2015 

------------------------------------------------------------------------------------------------------------ ------------------------------ 

1. INTRODUCTION 
1.1 Distribution Systems and Mobile Systems  

A distributed system is a compilation of self-

governing entities that work together to solve a problem 

that cannot be individually solved. A distributed system 

can be characterized as a collection of mostly 

autonomous processors communicating over a 

communication network [24].  

 In a distributed system, there exists no system 

wide common clock (global clock). In other words, the 

notion of global time does not exist. Suppose a global 

(common) clock is available for all the processes in the 

system. In this case, two different processes can observe 

a global clock value at different instants due to 

unpredictable message transmission delays [24].  

 Due to the absence of global time and shared 

memory, it is difficult to reason about the temporal 

order of events in a distributed system. Hence, 

algorithms for a distributed system are more 

complicated to design and debug compared to 

algorithms for centralized systems. In addition, the 

nonexistence of a global clock makes it harder to 

accumulate up to- date information on the state of the 

whole system [24].  

 In mobile distributed computing system, 

some processes are operating on mobile hosts (MHs). 

An MH is a computer that may retain its connectivity 

with the rest of the distributed system through a 

wireless network while on move or it may disconnect. It 

requires integration of portable computers within 

existing data network. An MH can connect to the 

network from different locations at different times. The 

infrastructure machines that communicate directly with 

the MHs are called Mobile Support Stations (MSSs).   

A cell is a logical or geographical coverage area under 

an MSS. All MHs that have identified themselves with 

a particular MSS are considered to be local to the MSS. 

An MH can straightforwardly converse with an MSS 

(and vice-versa) only if the MH is physically positioned 

within the cell serviced by the MSS. At any given 

moment of time, an MH may logically belong to only 

one cell; its current cell defines the  MH’s location [25].  

 To throw a message from an MH h1 to 

another MH h2, h1 first sends the communication to its 

local MSS over the wireless network. This MSS then 

forwards the communication to the local MSS of h2 

which forwards it to h2 over its local wireless network 

[25].  

 Many Algorithms for MHs may make use of 

a handoff  modus operandi: when an MH switches cell, 

MSS of the two cells carry out the handoff procedure. 

An MSS may preserve algorithm specific data 

structures on the behalf of a local MH. When an MH 

moves into a new cell, data structures from the previous 

MSS are transferred to the new MSS. For this to be 

realized, it is compulsory that the MH either inform the 

previous MSS of the ID of this new MSS or vice-versa. 

It should be like that an MH supply the ID of its 

previous MSS after inflowing the new cell with the join 

() message [25]. 



Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2543 

Disconnection is handled in a parallel way to an MH 

switching cells. Disconnection is unlike from failure. 

Disconnections are optional or volunteer by nature, so 

an MH informs the system prior to its happening and 

executes an application-specific disconnection 

procedure if necessary. Disconnection can be deliberate 

or uncontrolled. The term “disconnection” implies a 
voluntary disconnection. An   unexpected or 

unintentional disconnection is considered to be a failure 

[25]. 

1.2  Software Based Fault Tolerance  

Fault tolerance can be achieved through some kind of 

redundancy. Redundancy can be temporal or spatial. In 

spatial redundancy or hardware-based fault tolerance, 

many copies of the application execute on diverse 

processors concurrently and stringent timing constraints 

can be met. But the outlay of providing fault tolerance 

using spatial redundancy is fairly high and may require 

additional hardware.  In temporal redundancy or 

software-based fault tolerance, an application is 

restarted from a former checkpoint or recovery point 

after a fault. This may result in the thrashing of some 

processing and applications may not be able to meet 

stringent timing targets. Checkpoint-Restart or 

Backward error recovery is quite inexpensive and does 

not require extra hardware in general. Besides providing 

fault tolerance, checkpointing can be used for process 

migration, debugging distributed applications; job 

swapping, postmortem analysis and stable property 

detection [24].There are two software based fault 

tolerance approaches for error recovery:  

 • Forward Error Recovery 

• Backward Error Recovery  
In forward error recovery techniques, the character of 

errors and damage caused by faults must be wholly and 

precisely assessed and so it becomes possible to 

eliminate those errors in the process state and enable the 

process to move onward [27]. In distributed system, 

precise estimation of all the faults may not be possible. 

In backward error recovery techniques, the nature of 

faults need not be predicted and in case of error, the 

process state is restored to preceding error-free state. It 

is independent of the nature of faults. Thus, backward 

error recovery is more common recovery mechanism 

[24]. 

1.3 Definitions and Notations  

Checkpoint:  Checkpoint is defined as a selected place 

in a program at which normal process is broken up 

specifically to conserve the status information necessary 

to allow recommencement of processing at a later time. 

A checkpoint is a local state of a process saved on 

stable storage. By periodically invoking the 

checkpointing process, one can save the status of a 

program at regular intervals [24]. 

Rollback Recovery:  If there is a failure one may 

restart computation from the last checkpoints, thereby, 

avoiding repeating computation from the 

commencement. The process of resuming computation 

by rolling back to a saved state is called rollback 

recovery [24, 27]. 

Global State: In a distributed system, since the 

processes in the system do not share memory, a global 

state of the system is defined as a set of local states, one 

from each process. The state of channels corresponding 

to a global state is the set of communication sent but not 

yet received [24, 27].  

Orphan Message:  A message whose receive event is 

recorded, but its send event is lost in the recorded 

global state. 

Consistent Global State:  A global state is said to be 

“consistent” if it contains no orphan message. To 
recover from a failure, the system restarts its execution 

from a previous consistent global state saved on the 

stable storage during fault-free execution. In distributed 

systems, checkpointing can be independent, coordinated  

or quasi-synchronous. Message Logging is also used for 

fault tolerance in distributed systems [24, 27]. 

Asynchronous Checkpointing: Under the 

asynchronous approach, checkpoints at each process are 

taken independently without any synchronization 

among the processes. Because of absence of 

synchronization, there is no guarantee that a set of local 

checkpoints taken will be a consistent set of 

checkpoints. It may require cascaded rollbacks that may 

lead to the initial state due to domino-effect [27].  

Coordinated Checkpointing: In coordinated or 

synchronous Checkpointing, processes take checkpoints 

in such a manner that the resulting global state is 

consistent. Mostly it follows two-phase commit 

structure [27]. In the first phase, processes take tentative 

checkpoints and in the second phase, these are made 

permanent. The main advantage is that only one 

permanent checkpoint and at most one tentative 

checkpoint is required to be stored. In the case of a 

fault, processes rollback to the last check pointed state.  

Communication-induced Checkpointing: It avoids 

the domino-effect without requiring all checkpoints to 

be coordinated [24]. In these protocols, processes take 

two kinds of checkpoints, local and forced.  Local 

checkpoints can be taken independently, while forced 

checkpoints are taken to guarantee the eventual 

progress of the recovery line and to minimize useless 

checkpoints.  As opposed to coordinated checkpointing, 

these protocols do no exchange any special 

coordination messages to determine when forced 

checkpoints should be taken. But, they piggyback 

protocol specific information [generally checkpoint 

sequence numbers] on each application message; the 

receiver then uses this information to decide if it should 

take a forced checkpoint.  

Deterministic Systems: If two processes start in the 

same state, and both receive the identical sequence of 

inputs, they will produce the identical sequence outputs 

and will finish in the same state. The state of a process 

is thus completely determined by its starting state and 

by sequence of messages it has received [23, [24], [25].  

Checkpoint Interval (CI): The i
th

 CI of a process 

denotes all the computation performed between its i
th 

and (i+1)
th

 checkpoint, including the i
th

 checkpoint  but 

not the (i+1)
th

 checkpoint. 



Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2544 

Direct Dependency among Processes:  Pj is directly 

dependent upon Pk only if there exists m such that Pj 

receives m from Pk in the current CI and Pk has not 

taken its permanent checkpoint after sending m.  

Minimum Set: A process Pi is in the minimum set only 

if checkpoint initiator process is transitively dependent 

upon it. 

Minimum-process Coordinated Checkpointing 

Algorithms : In these algorithms, only a subset of 

interacting processes (called minimum set) are required 

to take checkpoints in an initiation.  

Anti-Message: David R. Jefferson [29] introduced the 

concept of anti-message. Anti-message is precisely like 

an original message in format and content except in one 

field, its sign. Two messages that are identical except 

for opposite signs are called anti-messages of one 

another. All messages sent explicitly by user programs 

have a positive (+) sign; and their anti-messages have a 

negative sign (-). Whenever a message and its anti-

message occur in the same queue, they immediately 

eradicate one another. Thus the result of enqueueing  a 

message may be to shorten the queue by one message 

rather than lengthen it by one.  

2. LITERATURE SURVEY 
2.1 Chandy and Lamport Algorithm [1] 

They designed a global snapshot algorithm for 

distributed systems. It is observed that every 

checkpointing algorithm proposed for message passing 

system uses Chandy and Lamport’s algorithm as the 
foundation. The algorithms proposed in literature for 

message passing  systems may be derived by relaxing 

various assumptions made by the demand modifying 

the way each step is carried out.  

The steps are below: 

(1) Save the local context in a stable storage. 

(2) For i = 1 to all outgoing channels do send 

markers along channel i; 

(3) Continue regular computation; 

(4) For i=1 to all incoming channels do Save 

incoming messages in channel i until a marker I is 

received along that channel. 

Each step of CL algorithm can be modified to 

accommodate some improvements in basic global 

snapshot algorithm. 

In Step 1 node saves its context in stable storage .The 

overhead associated with step one is context saving 

overhead. The objective of saving context in stable 

storage is to ensure its availability after a node failure 

.The overhead of context saving is proportional to the 

size of context and the time taken to access the stable 

storage. Context saving overhead can be reduced by (a) 

minimizing the context size and (b) overlapping context 

saving with computation. 

In Step 2 markers are sent along all outgoing channels 

.The purpose of a marker is  

(1) To inform the receiving node that a new checkpoint 

has to be taken; 

(2) To separate the messages of the previous and 

current checkpoint interval. 
2.2 Wang and Fuchs Lazy Algorithm [17] 

  The lazy new algorithm work as on receiving a marker 

from process p , process q, “remembers” the marker 
(marks the channel dirty) of marker from p. It sends 

markers on all outgoing channels as usual. However q 

does not need along all outgoing channels postpones the 

recording of its local state . Local state recording can be 

postponed to a later time .q is forced to take a local 

snapshot only if q receives a message from a process p. 

a marker from which it has already received. By 

delaying the recording of a local snapshot the number 

of in- transit message is decreased. Thus, a process can 

reduce the amount of channel state that 

it needs to record with the snapshot. The ability to 

postpone recording local state also has the advantage of 

giving process flexibility in scheduling this potentially 

expensive task. 

There is one technical problem with the deferment as 

described, however. Consider the case of a process r 

that does not converse with the rest of the system. This 

process could just execute some local computation, 

never sending or receiving messages to the other 

processes. In such a case, all other processes in the 

system could take their local snapshots, but the global 

snapshot cannot be calculated until r records its local 

state. 

In order to force the global state collector to terminate, 

a third event can be added: A marker has 

been received on every incoming channel. The local 

snapshot triggered by this event will record the state of 

every incoming channel as empty. 

2.3 Venkatesan’s Incremental method [19]: 

 Venkatesan proposed an incremental approach to 

collecting global snapshots. Using this solution each 

approach maintains the most recent snapshots taken. A 

new local snapshot would then just involve combining 

the local state change since the last snapshot with the 

most recent snapshot. This algorithm assumes the 

presence of only a single initiator process.  
2.4 Koo-Toueg Alogritham [5]: 

  Koo and Toueg have shown that if the nodes capture 

their local snapshots in an uncoordinated manner, it 

may not be possible to assemble a consistent global 

state from such snapshots. The rollback may lead to 

domino effect. In Synchronous snapshot collection 

algorithm a node initiates snapshot collection by taking 

its local snapshot then it sends request message to 

another nodes to take their snapshot. If the nodes 

maintain information about casual dependencies a 

minimal number of nodes have to take their local 

snapshots in reaction to such requirements. Koo and 

Toueg had presented such an algorithm which involves 

suspending the underlying computation during snapshot 

compilation .The nodes resume the underlying when the 

snapshot collection terminates. Koo and Toueg have 

planned methods to handle concurrent initiations of 

snapshot collection. They handle concurrent snapshot 

collection in following way. Once a node takes a local 

snapshot, it is unwilling to take a snapshot in response 

to another initiator. The node sends a negative response 

to all subsequent requests until the snapshot request is 



Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2545 

made permanent or until the snapshot collection is 

aborted. Their algorithm makes the following 

assumption about distributed system: processes 

communicate by exchanging messages through 

communication channels. Communication channels are 

FIFO. Communication failure does not partition the 

network. The Checkpoint algorithm takes two kinds of 

checkpoints on stable storage: Permanent and tentative. 

A permanent checkpoint is a local checkpoint at a 

process and is a part of a consistent global checkpoint 

.A tentative checkpoint is a temporary checkpoint that 

is made permanent checkpoint on successful 

termination of checkpointing algorithm .In case of a 

failure processes rollback only to their permanent 

checkpoints for recovery .The algorithm assumes that 

no process fails during the execution of algorithm .The 

algorithm consists of two phases  

First Phase  

An initiating process Pi captures a tentative checkpoint 

and requests all other processes to capture  tentative 

checkpoints. Each process informs Pi whether it 

succeeded in taking a tentative checkpoint. A process 

says “no” to a request if it fails to take tentative 
checkpoint which would be due to numerous reasons 

depending on underlying function. If Pi learns that all 

the processes have effectively taken tentative 

checkpoints Pi decides that all tentative checkpoints 

should be made enduring; otherwise Pi decides that all 

the tentative checkpoints should be superfluous. 

Second Phase 
Pi informs all the processes that their verdict had been 

reach at the end of first phase. A process on receiving 

the message from Pi will act consequently. Therefore, 

either all or none of processes move ahead the 

checkpoint by taking permanent checkpoints. The 

algorithm requires that after a process has taken a 

tentative checkpoint it cannot send communications 

related to underlying computation until it informed of 

Pi’s verdict.     

2.5 Silva L, Silva J Alogrithm [16]: 
 

They designed an all process synchronous 

checkpointing protocol for distributed systems. The 

non- intrusiveness during checkpointing is attained by 

piggybacking ever-increasing checkpoint numbers 

along with computational messages. When a process 

receives a computational message with the high 

checkpoint number, it captures its checkpoint before 

processing the message. When it truly gets the 

checkpoint request from the initiator, it ignores the 

same. If each process of the distributed program is 

permitted to initiate the checkpoint operation, the 

network may be swamped with control messages and 

process might misuse their time capturing unnecessary 

checkpoints. In order to avoid this, Silva and Silva gave 

the key to initiate checkpoint algorithm to one process. 

The checkpoint event is triggered periodically by a local 

timer mechanism. When this timer expires, the initiator 

process checkpoint the state of process running in the 

machine and force all the others to take checkpoint by 

sending a broadcast message. The interval between 

adjacent checkpoints is called checkpoint interval.  

2.6 J.L.Kim and T.Park Algorithm [11] : 

Kim-Park Algorithm proposed a protocol for 

checkpointing recovery which exploits the dependency 

relationship between processes to achieve time-

efficiency in checkpointing and rollback coordination. 

Unlike other synchronized protocols. In which the 

checkpointing coordinator collects the status 

information of the processes that it depends on and 

delivers its decision, the process in their protocol takes 

a checkpoint when it knows that all processes on which 

it computationally depends took their checkpoints. In 

this way, the coordinator of the checkpointing does not 

always have to deliver its decision after it collects the 

status of the processes it depends on hence one phase of 

the coordination is practically removed. The 

checkpointing coordination time and the possibility of 

total abort of the checkpointing are substantially 

reduced. Reduction of the coordination roll back time is 

also achieved by sending the restart messages from the 

coordinator directly to the roll back process. and 

concurrent activities of the checkpointing and roll back 

are effectively handled exploiting the process 

dependency relationship. 

2.7 Ravi Prakash  and Mukesh Singhal Algorithm [7]: 

They had described a Synchronous Snapshot 

compilation algorithm for Mobile Systems that neither 

forces every node to take a local snapshot nor blocks 

the essential computation during snapshot collection. If 

a node initiates snapshot collection, local snapshot of 

only those nodes that have directly or transitively 

affected the initiator, take their checkpoints. This paper 

presents that the global snapshot collection terminates 

within a finite time of its request and collected global 

snapshot is consistent. This paper presents a minimal 

rollback/recovery algorithm in which the computation 

at a node is rolled back only if depends on operations 

that have been undone due to failure of node(s).Both the 

algorithms have low communication and storage 

overheads and meet the low energy consumption and 

low bandwidth  constraints of mobile computing 

systems. The synchronous snapshot collection 

algorithm that accounts for the mobility of the nodes 

.The algorithm forces a minimal set of nodes to take 

their snapshots and underlying computation is not 

suspended during snapshot collection .An interesting 

aspect of the algorithm is that it has lazy phase that 

enables nodes to take local snapshots in quasi-

asynchronous fashion, after the coordinated snapshot 

collection phase is over. This further reduces the 

amount of computation that is rollback during recovery 

from node failure. The lazy phase advances the 

checkpoint slowly rather than in a burst. This avoids 

disagreement for the low bandwidth channels. This 

algorithm also considers the changing topology of 

network due to mobility of nodes. Here the Recovery 

algorithm is a compromise between two diverse 

recovery strategies – fast recovery with high 



Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2546 

communication and storage overhead and slow recovery 

with very little communication overhead.  

 2.8 Coa and Singhal Minimum-process Blocking 

Scheme [6]  

They presented a minimum process checkpointing 

algorithm in which, the dependency information is 

recorded by a Boolean vector. This algorithm is a two-

phase protocol and saves two kinds of checkpoint on 

the stable storage. In the first phase, the initiator sends a 

request to all processes to send their dependency vector. 

On receiving the request, each process sends its 

dependency vector. Having received all the dependency 

vectors, the initiator constructs an N*N dependency 

matrix with one row per process, represented by the 

dependency vector of the process, Based on the 

dependency matrix, the initiator can locally calculate all 

the process on which the initiator transitively depends. 

After the initiator finds all the process that need to take 

their checkpoints, it adds them to the set Sforced and asks 

them to take checkpoints. Any process receiving a 

checkpoint request takes the checkpoint and sends a 

reply. The process has to be blocked after receiving the 

dependency vectors request and resumes its 

computation after receiving a checkpoint request. 

2.9 Cao-Singhal Non-intrusive Checkpointing 

Algorithm  [2]:  
They proved that no min-process non-blocking 

algorithm exists. There are two directions in designing 

efficient coordinated checkpointing algorithms. First is 

to relax the non-blocking condition while keeping the 

min-process property. The other is to relax the min-

process condition while keeping the non-blocking 

property. The new constraints in mobile computing 

system, such as low bandwidth of wireless channel, 

high search cost, and limited battery life, suggest that 

the proposed checkpointing algorithm should be a min-

process algorithm. Therefore, they  developed  an 

algorithm that relaxes the min-process  condition. In 

this scheme, they introduced the concept of mutable 

checkpoint, which is neither a tentative checkpoint nor 

a permanent checkpoint, to design efficient 

checkpointing algorithms for mobile computing 

systems. Mutable checkpoints can be saved anywhere, 

e.g., the main memory or local disk of MHs.  

Such algorithms rely on the two-phase commit protocol 

and save two kinds of checkpoints on the stable storage: 

tentative and permanent.  

In the first phase, the initiator takes a tentative 

checkpoint and forces all relevant processes to take 

tentative checkpoints. Each process informs the initiator 

whether it succeeded in taking a tentative checkpoint. 

When the initiator learns that all relevant processes 

have successfully taken tentative checkpoints, it asks 

them to make their tentative checkpoints permanent; 

otherwise, it asks them to discard them. A process, on 

receiving the message from the initiator, acts 

accordingly. A non-blocking checkpointing algorithm 

does not require any process to suspend its underlying 

computation. When processes do not suspend their 

computations, it is possible for a process to receive a 

computation message from another process which is 

already running in a new checkpoint interval. If this 

situation is not properly handled, it may result in an 

inconsistency. 

In their algorithm, initiator, say Pin,   sends the 

checkpoint request to any process, say Pj, only if Pin 

receives m from Pj in the current CI. Pj takes its 

tentative checkpoint if Pj has sent m to Pin in the current 

CI; otherwise, Pj concludes that the checkpoint request 

is a useless one. Similarly, when Pj takes its tentative 

checkpoint, it propagates the checkpoint request to 

other processes. This process is continued till the 

checkpoint request reaches all the processes on which 

the initiator transitively depends and a checkpointing 

tree is formed. During checkpointing, if Pi receives m 

from Pj such that Pj has taken some checkpoint in the 

current initiation before sending m, Pi may be forced to 

take a checkpoint, called mutable checkpoint. If Pi is not 

in the minimum set, its mutable checkpoint is useless 

and is discarded on commit. The huge data structure 

MR[] is also attached with the checkpoint requests to 

reduce the number of useless checkpoint requests. The 

response from each process is sent directly to initiator.  

2.10 P. Kumar and L. Kumar algorithm [3] :  

In Cao and Singhal algorithm number of useless 

checkpoint may exceeding high in  some situation [2].  

P. Kumar and L. Kumar proposed a  new for 

Synchronous check pointing protocol for mobile 

distributed system [3]. They are able to maintain exact 

dependencies among processes and make an 

approximate set of interacting processes at the 

beginning. In this way the time to collect coordinated 

checkpoint is reduced. The number of useless check 

pointing and blocking processes is also reduced. A 

process checkpoint if the probability that it will get a 

checkpoint request in current initiation is high. A few 

processes may be blocked but they  can continue their 

normal computation and may send message.. 
 

Suppose, during the execution of the check pointing 

algorithm, Pi takes its checkpoint and sends m to Pj. Pj 

receives m such that it has not taken its checkpoint for 

the current initiation and it does not know whether it 

will get the checkpoint request. If Pj takes its 

checkpoint after processing m, m will become orphan. 

In order to avoid such orphan messages, they propose 

the following technique. If Pj has sent at least one 

message to a process, say Pk and Pk is in the tentative 

minimum set, there is a good probability that Pj will get 

the checkpoint request. Therefore, Pj takes its induced 

checkpoint before processing m. An induced checkpoint 

is similar to the mutable checkpoint [14]. In this case, 

most probably, Pj will get the checkpoint request and its 

induced checkpoint will be converted into permanent 

one. There is a less probability that Pj will not get the 

checkpoint request and its induced checkpoint will be 

discarded. Alternatively, if there is not a good 

probability that Pj will get the checkpoint request, Pj 

buffers m till it takes its checkpoint or receives the 

commit message. They have tried to minimize the 

number of useless checkpoints and blocking of the 



Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2547 

process by using the probabilistic approach and 

buffering selective messages at the receiver end. Exact 

dependencies among processes are maintained. It 

abolishes the useless checkpoint requests and reduces 

the number of replica checkpoint requests as compared 

to [14].  

2.11 Kumar and Khunteta  Minimum-Process 

Coordinated Check pointing Protocol For Mobile 

Distributed System [21] 
 

They designed a minimum process algorithm for mobile 

distributed where no useless checkpoint are taken and 

an effort has been made to optimize the blocking of 

processes. In this algorithm they proposed that during 

the checkpoint period, selective message are buffered at 

the receiver end. During its blocking period, a process 

allowed to perform its normal procedure. So with the 

help of this method blocking of process is minimum. 

They captured the transitive dependencies during the 

normal execution by piggybacking dependency vector 

onto computational message. So in this way they try to 

reduce the check pointing time by avoiding the 

formation of checkpoint tree.  
2.12 Kumar and Garg Algorithm[18] : Minimum-

process coordinated check pointing is a suitable 

approach to introduce fault tolerance in mobile 

distributed systems transparently. It may require 

blocking of processes, extra synchronization messages 

or taking some useless checkpoints. Checkpointing 

overhead may be exceedingly high in all-process 

checkpointing. To optimize both matrices, the check 

pointing overhead and the loss of computation on 

recovery, Kumar and Garg  proposed a hybrid 

checkpointing algorithm, where an all process 

checkpoint is enforced after executing minimum-

process algorithm for a fixed number of time. In the 

first phase, the MHs in the minimum set are required to 

take soft checkpoint only. Soft Checkpoint is stored on 

the disk of the MH and is similar to mutable 

checkpoint. In the minimum process algorithm, a 

process takes its forced checkpoint only if it is having 

a good probability of getting the checkpoint request; 

otherwise, it buffers the received messages. 

In hybrid checkpointing algorithm all process 

coordinated checkpoint is taken after the execution of 

minimum-process coordinated check pointing algorithm 

for a fixed number of times. The number of useless 

checkpoints and blocking of processes are reduced in 

minimum-process check pointing. They proposed 

probabilistic approach  to reduce the number of useless 

checkpoints and blocking of process. Thus, the 

proposed protocol is simultaneously able to reduce the 

useless checkpoints and blocking of processes at very 

less cost of maintaining and collecting dependencies 

and piggybacking checkpoint sequence numbers onto 

normal messages. Concurrent initiations of the 

proposed protocol do not cause its concurrent 

executions. They try to reduce the  loss of 

checkpointing effort when any process fails to take its 

checkpoint in Coordination with others. 
 

2.13 Ch. D. V. Subba Rao and M.M. Naidu [10]: 

 Check pointing and message logging are the popular 

and general-purpose tools for providing fault-tolerance 

in distributed systems. The most of the Coordinated 

checkpointing algorithms available in the literature have 

not addressed about treatment of the lost messages and 

these algorithms suffer from high output commit 

latency. To overcome the above limitations, the authors  

propose a new coordinated checkpointing protocol 

combined with selective sender-based message logging. 

The protocol is free from the problem of lost messages. 

The term ‘selective’ implies that messages are logged 
only within a specified interval known as active 

interval, thereby reducing message logging overhead. 

All processes take checkpoints at the end of their 

respective active intervals forming a consistent global 

state. Outside the active interval there is no 

checkpointing of process state. This protocol minimizes 

different overheads i.e. checkpointing overhead, 

message logging overhead, recovery overhead and 

blocking overhead. Unlike blocking coordinated 

checkpointing, the disk contentions are less in the 

proposed protocol. In this protocol there exists 

Pinitiator, which coordinates with all the processes to 

take a consistent global checkpoint. Pinitiator is 

responsible for invoking the checkpoint operation 

periodically. It sends control messages, prepare 

checkpoint and take checkpoint messages to all other 

processes.  

2.14 Ajay D. Kshemkalyani [14]:  
 

 He proposed a fast and Message-Efficient Global 

Snapshot Algorithms for Large-Scale Distributed 

Systems. He presented two algorithms: simple tree, and 

hypercube, that requires very less number  of messages. 

In addition, the hypercube algorithm is symmetrical and 

has greater potential for balanced workload and 

congestion-freedom. This algorithm finds the direct 

application in large scale distributation system such as 

peer to peer system and MIMD super computer which 

are fully connected topology of a large no of processors. 

All the algorithms assume non-FIFO channels.  
 

 

CONCLUSION:   
A survey of the literate on checkpointing algorithms for 

mobile distributed systems shows that a large number of 

papers have been published. We have reviewed and 

compared different approaches to checkpointing in 

mobile distributed systems with respect to a set of 

properties including the assumption of piecewise 

determinism, performance overhead, storage overhead, 

ease of output commit, ease of garbage collection, ease 

of recovery, useless checkpointing, low energy 

consumptions.  

 

REFERENCES 
[1]. Chandy K. M. and Lamport L., “Distributed 

Snapshots: Determining Global State of Systems,” 
ACM Transaction on Computing Systems, vol. 3, 

No. 1, pp. 63-75, February 1985. 



Int. J. Advanced Networking and Applications   

Volume: 06 Issue: 06   Pages: 2542-2548 (2015) ISSN: 0975-0290 

 

2548 

[2]. G. Cao and M. Singhal,”Mutable Checkpoints:A 
New Checkpointing Approach for Mobile 

Computing Systems”, IEEE Transactions On 

Parallel And D istributed 

Systems,Vol.12,No.2,February 2001,pp 157-172. 

[3]. Lalit Kumar Awasthi, Kumar p. 2007 A 

Synchoronous Checkpointing Protocol For Mobile 

Distributed Systems. Probabilistic Approach. Int 

J. Information and Computer Security, Vol.1, 

No.3 .pp 298-314 

[4]. R. Prakash and M. Singhal. “Low-Cost 

Checkpointing and Failure Recovery in Mobile 

Computing Systems”. IEEE Trans. on Paralleland 
Distributed System, pages 1035-1048,Oct. 1996. 

[5]. Koo R, Toueg S “ Checkpointing and rollback 
recovery for distributed systems”.IEEE 
Trans.Software Eng. SE-13: 23-31,1987 

[6].  G. Cao and M. Singhal. “On impossibility of  
Min-Process and Non-Blocking Checkpointing 

and An Efficient Checkpointing algorithm for 

mobile computing Systems”. OSU Technical 
Report #OSU-CISRC-9/97-TR44, 1997. 

[7]. Prakash R. and Singhal M. “Maximal Global 
Snapshot with concurrent initiators,” Proc. Sixth 
IEEE Symp. Parallel and Distributed Processing, 

pp.344-351, Oct.1994 

[8].  Bidyut Gupta, S.Rahimi and Z.Lui. “A New High 
Performance Checkpointing Approach for Mobile 

Computing Systems”. IJCSNS International 

Journal of Computer Science and Network 

Security, Vol.6 No.5B, May 2006. 

[9].  Acharya A. and Badrinath B. R., “Checkpointing 
Distributed Applications on Mobile Computers,” 
Proceedings of the 3rd International Conference 

on Parallel and Distributed Information Systems, 

pp. 73-80, September 1994. 

[10].  Ch.D.V. Subba Rao and M.M. Naidu. “A New, 
Efficient Coordinated Checkpointing Protocol 

Combined with Selective Sender-Based Message 

Logging” 

[11]. J.L.Kim and T.Park. “An efficient protocol for 
checkpointing recovery in Distributed Systems” 
IEEE Transaction On Parallel and Distributed 

Systems,4(8):pp.955-960, Aug 1993. 

[12]. Yanping Gao, Changhui Deng, Yandong Che. 

“An Adaptive Index-Based Algorithm using 

Time-Coordination in Mobile Computing”. 
International Symposiums on Information 

Processing, 2008. 

[13]. Kanmani - Anitha - Ganesan .“Coordinated 
Checkpointing with Avalanche Avoidance for 

Distributed Mobile Computing System.” 

International Conference on Computational 

Intelligence and Multimedia Applications 2007. 

[14]. Ajay D Kshemkalyani: “A symmetric O(n log n) 
message distributed snapshot algorithm for large 

scale systems” IEEE, 2010, pp 1-4 

[15]. Ajay D Kshemkalyani “ Fast and message 
efficient global snapshot algorithms for large scale 

distributed systems  IEEE 2010. Page(s): 1281 – 

1289. 

[16]. Silva L, Silva J 1992 Global checkpointing for 

distributed programs. Proc. IEEE 11th Symp. On 

Reliable Distributed Syst. pp 155-162. 

[17]. Wang, Y.M., Fuchs, W.K.: Lazy checkpoint 

coordination for bounding rollback propagation. 

In: Proceedings of IEEE Symposium on Reliable 

Distributed Systems, pp. 78–85 (1993). 

[18]. Kumar, P., Garg, R.: Soft Checkpointing Based 

Hybrid Synchronous Checkpointing Protocol for 

Mobile Distributed Systems. International Journal 

of Distributed Systems and Technologies 2(1), 1–
13 (2011) 

[19]. Venkatesan S 1993 Message-optimal incremental 

snapshots J. Comput. Sofnvare Engineering 1 

211-31. 

[20]. Rahul Garg, Vijay K Garg, Yogish sabharwal 

“Scalable algorithms for global snapshots in 
distributed systems” ACM 2006. 

[21]. Kumar and Khunteta “A Minimum-Process 

Coordinated Check pointing Protocol For Mobile 

Distributed System” IJCSE,  Vol. 02, No. 04, 

2010, 1314-1326. 

[22]. Gupta and Kumar “Review of Some 
Checkpointing Algorithms for Distributed and 

Mobile Systems” CNSA 2011, CCIS 196, pp. 
167–177, 2011. 

[23]. R. Tuli,P. Kumar,“ Minimum process coordinated 
Checkpointing scheme for ad hoc Networks”, 
International Journal on AdHoc Networking 

Systems (IJANS) Vol. 1, No. 2, October 2011 ,pp-

51-63. 

[24]. M. Singhal and N. Shivaratri, Advanced Concepts 

in Operating Systems, New  York, McGraw Hill, 

1994. 

[25]. Acharya A., “Structuring Distributed Algorithms 
and Services for networks with Mobile Hosts”, 
Ph.D. Thesis, Rutgers University, 1995.   

[26]. David R. Jefferson, “Virtual Time”, ACM 
Transactions on Programming Languages and 

Systems, Vol. 7, NO.3,  pp 404-425, July 1985.      

[27]. Elnozahy E.N., Alvisi L., Wang Y.M. and 

Johnson D.B., “A Survey of Rollback-Recovery 

Protocols in Message-Passing Systems,” ACM 
Computing Surveys, vol. 34, no. 3, pp. 375-408, 

2002. 

 


	1. INTRODUCTION
	1.2  Software Based Fault Tolerance


